

AQA Chemistry A-level

3.3.1: Introduction to Organic Chemistry Detailed Notes

3.3.1.1 - Nomenclature

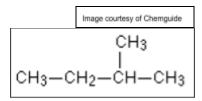
There are different way of writing and representing organic compounds:

1. Empirical Formula

- The simplest whole number ratio of atoms of each element in a compound.

2. Molecular Formula

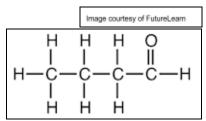
- The true number of atoms of each element in a compound.


3. General Formula

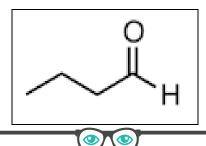
- All members of a homologous organic series follow the general formula. *Example:*

Alkanes =
$$C_n H_{2n+2}$$

4. Structural Formula


- Shows the structural arrangement of atoms within a molecule. *Example:*

5. Displayed Formula


- Shows every atom and every bond in an organic compound.

Example:

6. Skeletal Formula

- Shows only the bonds in a compound and any non-carbon atoms.
- Vertices are carbon atoms.
- Hydrogen is assumed to be bonded to them unless stated otherwise. *Example:*

Homologous Series

Organic compounds are often part of a homologous series, in which all members follow a general formula and react in a very similar way. Each consecutive member differs by CH₂ and there is an increase in boiling points as chain length increases.

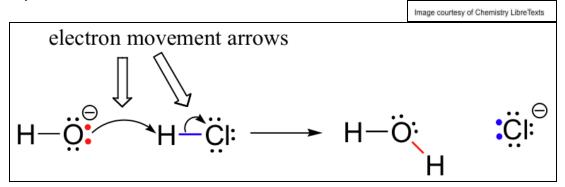

Example:

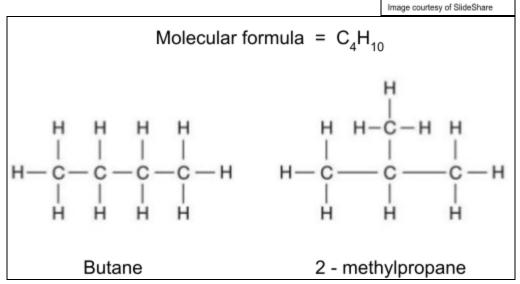
TABLE 25.1	First Several Members of the Straight-Chain Alkane Series		
Molecular Formula	Condensed Structural Formula	Name	Boiling Point (°C)
CH ₄	CH ₄	Methane	-161
C ₂ H ₆	CH ₃ CH ₃	Ethane	-89
C ₃ H ₈	CH ₃ CH ₂ CH ₃	Propane	-44
C ₄ H ₁₀	CH ₃ CH ₂ CH ₂ CH ₃	Butane	-0.5
C5H12	CH ₃ CH ₂ CH ₂ CH ₂ CH ₃	Pentane	36
C ₆ H ₁₄	CH3CH2CH2CH2CH3	Hexane	68
C ₇ H ₁₆	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	Heptane	98
C ₈ H ₁₈	CH3CH2CH2CH2CH2CH2CH3	Octane	125
C ₉ H ₂₀	CH3CH2CH2CH2CH2CH2CH2CH3	Nonane	151
$C_{10}H_{22}$	CH3CH2CH2CH2CH2CH2CH2CH2CH3	Decane	174

3.3.1.2 - Reaction Mechanisms

These show the movement of electrons within a reaction, shown with curly arrows.

Example:

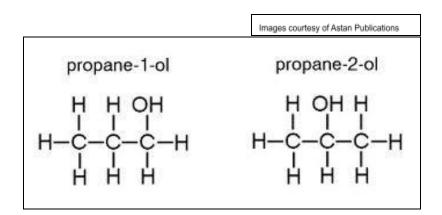
Mechanisms are used to show the reactions of organic compounds.


3.3.1.3 - Isomerism

Isomers are molecules with the same molecular formula but a different arrangement of atoms within the molecule.

Structural Isomers

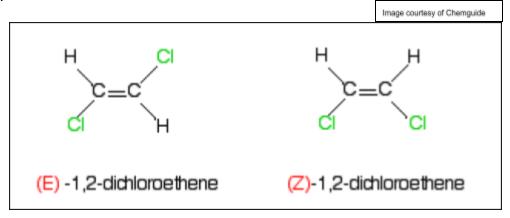
These have a different structural arrangement of atoms. They can be straight chains or branched chains but will have the same molecular formula.


Example:

Position Isomers

These have the functional group of the molecule in a different position of the carbon chain.

Example:

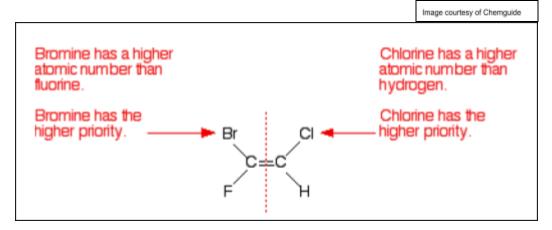

Functional Group Isomers

These have a different arrangement of the same molecular formula so that the molecule has a different functional group.

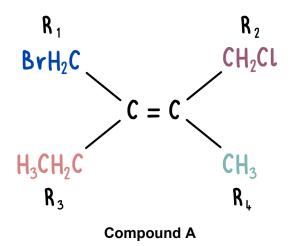
Stereoisomers

These have a different spatial arrangement. A type of stereoisomerism is **E-Z isomerism**, where **limited rotation** around a double carbon bond means that functional groups can either be 'together' or 'apart'. The **E** isomer (german for entgegen meaning apart) has functional groups **on opposite sides**. The **Z** isomer (german for zusammen meaning together) has functional groups **together** on the same side of the double bond.

Example:



Cahn-Ingold-Prelog (CIP) Priority Rules


There is a **priority of different groups** in molecules that can display E-Z isomerism. The first atom which is directly bonded to the carbon with the double bond with the **higher Ar** is given the **higher priority**. These groups are used to determine if it is the E or Z isomer.

Example:

Therefore this molecule is the Z isomer as the highest priority atoms are on the same side.

How to determine a more complicated E/Z isomers

- Step 1: Apply the CIP priority rules
 - Look at R1 and R3:
 - Carbon is the first atom attached to the C=C bond, on the left hand side
 - Look at R2 and R4:
 - Carbon is the first atom attached to the C=C bond, on the right hand side
 - This means that we cannot deduce if compound A is an E or Z isomer by applying the CIP priority rules to the first atom attached to the C=C bond
 - Therefore, we now have to look at the second atoms attached
- Step 2: Apply the CIP priority rules (using the second atoms)
 - Look again at R1 and R3:
 - The second atoms attached to R1 are hydrogens and bromine
 - The second atoms attached to R3 are hydrogens and another carbon
 - We can ignore the hydrogens as both R groups have hydrogens
 - Bromine has a higher atomic number than carbon, so bromine is the higher priority
 - Therefore, the CH2Br group has priority over the CH3CH2 group
 - Look again at R2 and R4:
 - The second atoms attached to R2 are hydrogens and chlorine
 - The second atoms attached to R4 are hydrogens
 - Chlorine has a higher atomic number than hydrogen, so chlorine is the higher priority
 - Therefore, the CH2Cl group has priority over the CH3 group
- Step 3: Deduce E or Z
 - In compound A, the two highest priority groups are on the same side (both above) the C=C bond
 - Therefore, compound A is the **Z** isomer

